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NUCLEON CORRELATION EFFECTS
ON Y-SCALING QUANTITIES IN NUCLEI*

M.K.Gaidarovl, A.N.Antonovl, S.S.Dimitroval, M.V.Stoitsov!

The asymptotic scaling function F(¥) and the binding correction B(y) as well
as the mean kinetic and removal energies are calculated in the cases of the ‘He,
12¢, 160 and *°Ca nuclei using the nucleon momentum distributions obtained
within the Jastrow correlation method and the phenomenological model accoun-
ted for short-range and tensor nucleon-nucleon correlations. The scaling func-
tions F(y) differ from those obtained in the mean-field approximation and are in
qualitative agreement with the available experimental data. It is shown that the
binding correction B(y) can be explicitly evaluated using a realistic nuciear
spectral function. The account for the nucleon-nucleon correlations gives increa-
sed values of the mean kinetic (7) and mean removal (E) energy (in comparison
with their values in the mean-field approximation) and leads to correct values of
the binding energy per nucleon in the nuclei considered.

The investigation.. has been performed at INRNE (Bulgaria) in collaboration
with LTP, JINR.

HyxsioHHHE KOppeasuuoHHHeE 3bdexTh
HA Y-CKEHIHMHNOBHIX BEJIMYMHAX B SApax

M.K.Tadzapos, A.H.Axronos, C.C.[Iumutposa, M.B.Ctonuos

AcumnroTuueckas cxefnmnrosas dbynxums F(y), nonpasxa Ha 3HEPrHio
cBa3U B(y) a mxxe cggnuue KMHETHYECKAS H JHEPIHd CBS3H BBIYMCIIEHB! AL
saep He, 2c, %0 u *°Ca ¢ ucnonssosanmen HYKJIOHHBIX MMITYJIBCHBIX pac-
npeaenesmit, NOyYeHHbIX B PAMKAX METOZA RCTPOBCKMX Koppesausmit i cheno-
MEHOJIOMMYECKOH MOAEH, YUMTHIBRIOUIEH xoporxonénmyloume ¥ TCH3OpHbIE
HYKJIOH-HYKJIOHHbIE xoppeasumu. Cxefunurosme dyHxumn F(y) otanuaiorcs
OT NOAYUEHHBIX B NTPUGIMIKEHHM CPEAHETO NO/S ¥ HAXOANTCH B KAYCCTBEHHOM
COrNAcHM C HMEIOLIMMMCE IXCTIEPHMENTAIbEbIMKM NaHHbMK. [loxasaHno, uro
Nonpasxa H& CBE3b B(y) TOMHO OLEHEHA C MCMONB3OBAHHEM PEANMCTUUHOA
anepuoft cnextpanbuoit PYHKUMH. Yuer HyXJIOH-HYKJIOHHBIX KOPpeJasuui
JACT YBEJIMYEHHBIE 3HAYCHMS CPEeAHEH KuBeTHueckok aneprmum (T) U cpenHeit
aueprvu cea3u (E) no CPpaBHEHMIO C MX 3HAUEHMSMH B IPUOIHXEHHH CDEHETO
noJist ¥ BEAYT K NPABMIILHBIM 3HAYEHUSM IHEPTHUM CBA3H HAa HYKJIOH 1S pac-
CMOTPEHHBIX Siep.
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1. Introduction

Significant part of the recent nuclear experiments, both in high and low
energies, poses the question about the limits of the mean-field approxima-
tion (MFA) in nuclear theory. We shall mention the deep-inelastic proton-,
inclusive and exclusive electron-scattering in nuclei which show the existen-
ce of high-momentum components in the nucleon momentum distribution as
well as partial depletion of the levels below the Fermi level and partial filling
above it in the nuclear ground state [1]. These results are in contradiction
with the predictions of the shell model. The reason of this are the effects of
short-range and tensor nucleon-nucleon correlations in nuclei which are re-
lated to specific peculiarities of the nucleon-nucleon forces at small distan-
ces. This imposes the development of correlated methods in nuclear theory
which are going beyond the limits of the MFA.

A plausible method for studying of short-range correlation (SRC)
effects in nuclei is the y-scaling method [2—10 ). Since West’s pioneer work
[2], there has been a growth of interest in y-scaling analysis, both in its
experimental and theoretical aspects. This is motivated by the importance of
extracting nucleon momentum distributions from the experimental data.
Furthemore, the y-scaling method enables us to see how the characteristics
of the system considered at finite momentum transfer q differ from those
obtained in the framework of the Plane Wave Impulse Approximation
(PWIA). From experimental point of view, the possibility of extracting the
nucleon momentum distribution from the inclusive electron quasielastic
scattering data relies on the knowledge of the scaling function in the asymp-
totic limit and there are no clear criteria to decide whether the available data
which are necessarily obtained for large but finite values of g can be asso-
ciated with those from the analysis of the true asymptotic region. It has been
shown that if a proper theory of y-scaling (taking into account the nucleon
binding and momentum) is adopted, then the extracted nucleon momentum
distributions are in good agreement with those obtained in a more direct
way from the exclusive electron scattering (e, e'p) experiments. This fact
confirms the expectation that the corresponding asymptotic scaling function
should agree with the experimental one even if the experimental data are
affected by the final state interaction (FSI).

A detailed study of the momentum distribution and its relation with the
spectral function shows that it can be divided into two parts corresponding to
low- and high-momentum components. These components in the nucleus
with A nucleons are associated with the ground state and high virtual exci-
tations of the spectator system with A — 1 nucleons. Such investigation
allows one to calculate the scaling function and some important nuclear
characteristics.
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In this paper we connect the results on the SRC effects obtained in the
Jastrow correlation method (JCM) {11—131] and in the phenomenological
method (PM) accounting for short-range and tensor correlations from
[14,15] with the quantities which are analysed in the y-scaling method. The
aim of our work is, using the nucleon momentum distributions obtained in
the correlation methods mentioned above, to calculate the scaling function,
the binding correction function as well as the mean kinetic and mean

removal energies in 4He, 12C, 160 and *°Ca nuclei. The results for the
asymptotic function are compared with the available experimental data for

the cases of *He and '2C nuclei. This comparison serves as a test for the

correlation methods. The results for the %0 and #°Ca nuclei are predictions
of the JCM and PM concerning the y-scaling quantities. The calculations of
the binding correction function and the mean kinetic and removal energies
give an additional information on the extent to which the SRC are accounted
for in the correlation methods considered in the present work and on their
reliability analyzing quantities which are sensitive to the SRC.

The definitions and discussion of the main y-scaling quantities, as well
as the basic relationships of the correlation methods considered in this work
are given in Section 2 of the paper. The results for the asymptotic scaling
function, for the binding correction function, as well as for the mean kinetic
and mean removal energies are presented in Section 3. The concluding re-
marks are given in Section 4. ’

2. Theoretical Basis

2.1. The Y-Scaling Method

The general concepts of the y-scaling method for the description of the
electron quasielastic scattering by nuclei have been introduced by West [2].
Using the scaling variable y as a kinematical variable, the inclusive cross sec-

tion o, can be presented in the PWIA in the form [10]:

F(q, ), a1

ep ka cosa

where aep( n)

scattering of an electron by an off-shell nucleon with momentum K, w(g) is

is the relativistic electron-proton (neutron) cross section in the
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the energy transfer, q is the momentum transfer and XIcosa is the
kinematical factor. The nuclear structure function
E @)k @y.E)
Flg.y=2r [ dE [ Pk, E)kdk )
Emin km(q,y,E)
is a function of ¢ and the scaling variable
y=(kq)/¢g=M (w - q2/2M)/q. A3)

In (2) P(k, E) is the spectral function, the limits of integration are deter-

mined by the energy conservation, E .= lE, I - IEA_l I, E, and E, ,

being the ground state energies of the Aand A — 1 nuclei, respectively. The
scaling variable y satisfies the equation:

w + My= [M*+ (g + 92124 (M2 _ + P12, o)

where M 4 and M, are the masses of the A and A — 1 nuclei in their
ground state. y has a meaning of a minimal longitudinal (along q) momen-
tum of a nucleon with the minimal value (Emln= M+M A1 M r M being
the proton mass) of the separation energy, i.e., |yl = kmi o(E min)- 1 hE spect-

ral function in (2) is usually given in the general form:

P(k, E) = P_(k, E) + P, (k, E), Q)
where '
Py (k. E)=n (k)3 (E - E,) 6)

is the probability distribution that the final (4 — 1) system is left in the ground
state (corresponding to the excitation energy E,_ ,=0and E= E_),
whereas P_ (k, E) is probability distribution that the final (A — 1) system is
left in any of its excited states (with E, |#0,E= E .+ E,_ ). Therela-
tion between the spectral function and the momentum distribution is

n(k) = }., P(k, E) dE = n (k) + °f° P (k, E)dE = n_(K) + n, (k).
E E

min min
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Indeed, the momentum distribution can be presented as follows:

A— A
n(0) = (W01 4o WED12+ 3 1A DIB @ eL @
f#0
where l’I\’ (k) is the annihilation operator of a nucleon with momentum Kk,
\I’g‘) is the wave function of the ground state of the A-nucleon system,

\I»‘SA_ D and \P}A_l) are the wave functions of the (A — 1)-nucleon system in

its ground and excited (f) state, respectively. It can be seen that the first
term in (8) reproduces n . ((k), whereas the second one gives n_ (k) from (7).

The separation of the spectral function (5) has been adopted (e.g.,
[6,10]D in order to single out the nucleon binding effect (coming from
P, (k, E)) on the scaling function. We use model spectral functions in which

only average excitation energy of the final nuclear system is considered:

P (k,E)=n_(k)d (E-E,). ()]
The value of —E; can be calculated from the energy weighed sum rule {16 ]:

E

A= le,l =1 (E)— (T) (A~ D)/(A - D)), (10)
where
(TY = [ (k*/2M) P(k, E) dk dE an
and
= [ EP(k, E) dk dE (12)

are the mean kinetic and mean removal energies, respectively, and l¢ 4l 18
the binding energy per particle. It follows from (5), (6), (9) and (12) that

(Ey=E_ S ot Eexs ex’ 13)
where 2
Sge= 47 [ n (k) K*dk | (14)
and
| S,.=4n [ n_ (k) Kdk (15)
are the occupation probabilities. The normalization of the spectral function is
4n [ P(k, E)k*dkdE=1. (16)
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It was shown in [8] that due to the behaviour of the spectral function
P(k, E) at large k and E and using eq.(5), the structure function can be pre-
sented in the form:

F(g,y) =2t f n,gr(k) kdk + 2 f dE f Pex(k, E) kdk, an
iyl E km(q,y,E)

min

where the first term scales in y, but the second term represents a «scaling
violation» (k min d€Pends on g) due to the nucleon binding. In the asymptotic

limit (g » )
5 k@, ) = ko ) = Iy = (B0l (8)

one has:
o0

F(y) =2le {I ng(Kykdk + 2t [ dE [ P_(k,E)kdk, (19)

E. -(E-E_ )
or
F(y) = (y) - B(y), (20)
where
f0) =2 [ n(k) kdk Q0
Iyl
is the longitudinal momentum distribution and
o y—(E-E )
B(y) =2t [ dE J  P_(k, E)kdk (22)
E Iyl

is the contribution arising from P, (k, E) representing the binding correc-

tion to the scaling function.
After taking the derivative of both sides of (20) one gets for the nucleon
momentum distribution (NMD):

___1 [dFQy) 4B _
n(k) = Zny[ Z +dyJ, k= 1yl 23)

Hence, the extraction of the NMD in the y-scaling approach needs the
asymptotic scaling function F(y) to be obtained from the experimental data
and the binding correction to the NMD 4B/ dy to be obtained in a realistic
way.
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The experimental inclusive cross sections o, for 3He [17,181, 4He, 12c

and SFe [19] and for the nuclear matter [20] give the possibility of deter-
mining the experimental scaling function [7,8 ]

o5 (q, ) d
Xp _ 2 N w
B0 =%+ o) |Bocosal 24

The experiméntal knowledge of the asymptotic scaling function F(y) and the
estimate of the binding corrections B(y) for 3He and for complex nuclei

[21,22] allow the NMD for 2H, *He, *He, 12C, 3®Fe and nuclear matter to
be obtained [8 ] using (23). The results for various nuclei confirmed the con-

clusion thatn(k)atk < 1 fm ™! can be predicted by the mean field methods,

but for k =2 fm~! the NMD behaviour depends on correlation effects in
nuclei and is almost independent of the mass number A.

In this work we shall apply the NMD obtained in JCM and in the PM
accounted for SRC and tensor correlations to calculate the scaling function
F(y)  and to compare directly =~ with the available experimental data for

F(y)in “He and !2C as well as the binding correction to the scaling function
B(y) and the mean kinetic and removal energies in the cases of 4He, 12C,

160 and “°Ca nuclei. The basic relations of the correlation methods used in
the calculations are given in the next subsection.

2.2. Phenomenological Correlation Methods

A method to account for the short-range repulsion in the nucleon-nuc-
leon force has been developed by Jastrow [23]. In it the total many-body
wave function is written in the form

W (..., 1) =C;2 I AE) D ()T ) (25)
lsisj<A

where A is the number of nucleons with particle coordinates L) DY ()]
is a Slater determinant built up from single-particle wave functions ¢ (r)
which correspond to the occupied states, and C 4 is the normalization cons-
tant. The correlation function f (rl.j) =f(lr,~ rjl) satisfies the conditions:

b (rij) =0, for Ir,— rjl <r, 26)
f(rl.j) =1, forlr~ rjl > o,
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where r. is the radius of the nucleon-nucleon repulsive core. The wave func-

tion W [eq.(25) ] is used as a trial function in varitional calculations of the
energy for a system with a given Hamiltonian. Various approximations and
appropriate techniques which are based on the variations with respect to the
single-particle functions ¢,(r) and the correlation function f(rl.j) have been

developed in the JCM.

Gaudin et al. [24] suggested a perturbation expansion method for
calculating the one- and two-body density martices. These quantities are
written as an expansion in terms of the functions

gr) = 1f(N1*-1, h(r) = f(r) — 1. Qn

Using the lowest-order-cluster approximation, harmonic-oscillator single-
particle wave functions and Gaussian form for the function f(r), the nucleon

momentum distribution n(k) for “He has been obtained [11]and compared
with the exact Jastrow calculations [25]. An important feature of n(k) is the

high-momentum tail at k> 2 fm ~!. This result shows the role of the Jastrow-
type SRC on the high-momentum components of the momentum distribution.

In [12,13] the JCM in its lowest-order approximation (LOA) is applied
to calculate short-range correlation effects on the nucleon momentum and
density distributions, as well as on the occupation probabilities and natural
orbitals in the 4He, 160 and *°Ca nuclei. The obtained analytical expres-
sions for the one-body density matrix, for the momentum and density dist-
ributions in [12,13] give a possibility for a detailed study of the quantities
sensitive to the SRC.

The short range and tensor correlation effects on the nucleon momen-
tum distributions and form factor have been studied within the phenomeno-
logical model from [14,15). The two-body correlation operator w(l, 2)
acting on the pair wave function is introduced in the two-body density
matrix of the correlated system: .

P (v, vy v, vy) = Zb [v,v,1u(l, 2)1ab) (ablu™* (1, 2)1vjv,) —
a,

= (v vyl u(l, 2)lab) (@blu (1, 2)lup))], (28)

where v = (r,, sf, t‘.'). In the case of the harmonic-oscillator single-particle

wave functions the two-particle state function ia(1), (2)) is expanded on
the basis of the relative and c.m. coordinates, the total angular momentum,
and spin and isospin of the pair:
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la(1), &(2)) = 3, C_,|nim) |NLM) | S§%) I TT), (29)
where N, L, M; n, I, m are the radial and angular c.m. and relative motion

quantum numbers; S, T, the spin and isospin of the pair; and $*and T7,
their third components.
The SRC effects are included by means of the operator u(1, 2),  acting

on the radial part of the pair wave function

[u(1,2)), , 1nlm) = N7,/ %f(r)1 (nim)), 30)
with r0 ro oo
(r)y —0, fry — 1. 3D

The tensor correlations are included by using the two-body operator
u(1,2),. . thatacts both on the angular and the radial parts of the relative

motion of the pair. In practical applications the tensor operator is restricted
to deuteron-like states only:

u(l,2) 1, 1% S, I T=0) =1 =91 2p _(in, 35, ), T=0)+

+ 5p,,(r) | n, 3D1, J5E,T=0), (32)
where p,_(r) are the radial wave functions, chosen to be the harmonic-oscil-

lator fuctions.
Explicit expressions for the nucleon momentum distributions and form

factors are obtained for the 4He, 160 and “°Ca nuclei in [15]. It is shown
that the effects of both short-range and tensor correlations lead to the exis-
tence of the high-momentum tail of the momentum distribution n(k) which
is several orders of magnitude higher than the values of n(k) in the inde-
pendent-particle models. The tensor correlations are stronger for light nuc-

lei (*He and '%0) than for 4°Ca.
The detailed study of the NMD in the JCM [12,13 ] and in the PM from
(14,15] shows that it can be separated into two terms, n(k) = n,(k) +

+ ny(k), where the first one (n, (k)) corresponds to the low-momentum re-
gion (k<2 fm_l); and the second one (n,(k)), to the high-momentum region

k=2 fm"l). This can be related to the conclusion from [8 ] that the NMD
atk=2fm lis entirely exhausted by n_ (k). The latter allows us to iden-
tify n sr(k) and n_ (k) from (7) with n, (k) and n,(k), respectively, and to cal-

culate the scaling function, the binding correction to it and the mean kinetic
and removal energies within the JCM and the PM for various nuclei.
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3. Results of Calculations and Discussion

3.1. Scaling Function and Binding Correction

The effects of the nucleon correlations accounted in the JCM [12,13]
and in the PM [14,15] on the y-scaling function F(y) and the binding cor-
rection B(y) can be calculated using the momentum distributions obtained in
both correlation methods in eqs.(19—22) and the model spectral functions
(eqs.(5,6,9)). The theoretical results for the functions F(y) and B(y) in the

4He, 12C, 160 and *°Ca nuclei obtained by using the nucleon momentum
distributions from the JCM method [12,13,26 ] are given in Figs.1—4. We
note that: i) At low values of Iyl (1yl < 350 MeV/c) the shape of F(y)fora
given nucleus is determined mainly by the first term of eq.(19), which scales
in y and is generated by ngr(k). The latter is similar to the momentum dist-

ribution predicted in the mean-field approximation; ii) At higher values of
tyl (1yl >350 MeV/c) the function F(y) is almost entirely determined by
the second term of eq.(19), which is generated by nex(k), i.e. by the high-

momentum part of the momentum distribution. The function n ox (k) i3

almost independent of the mass number A and contains the effects of the
SRC. Concerning the binding correction B(y) to the scaling function we note
that it is almost constant at y < — 100 MeV/c and is quite appreciable at

~
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Fig.1. The scaling function F(y) of *He (solid line) and the function

B(y) (dashed line) calculated by using the nucleon momentum dist-
ribution n(k) from [13]
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Fig.2. The same as in Fig.1, but for 12C. The nucleon momentum
distribution used in the calculation is from [26]
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Fig.3.The scaling function F(y) of 180 (solid line) and the function
B(y) (long-dashed line) calculated by using the nucleon momentum
distribution from [12,13]. The short-dashed line is the scaling
function F(y) calculated by using n(k) from [15]

|
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large values of |yl. This confirms the conclusions from (8 ] on the necessity
of the electron-nuclei quasielastic cross sections to be calculated in terms of
spectral functions and not simply by convoluting the free electron-nucleon
cross section with the nucleon momentum distribution.
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Fig.4. The same as in Fig.3, but for “°Ca
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Fig.5. The scaling function F(y) of ‘He. The solid triangles repre-
sent the experimental scaling function from [10]. The results of this
work: calculations by using n(k) from [13] (solid line) and calcu-
lations by using n(k) from [15) (long-dashed line). The short-
dashed line is the result from [10]

'
~

The scaling functions F(y) for the *He and '2C nuclei calculated in this
work are compared in Figs.5 and 6 with the available experimental data for
the asymptotic scaling function. They are compared also with the results of

our calculations for the scaling function in 4He, 160 and “OCa (Figs.3—6)
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Fig.6. The scaling function F(y) of 12¢. The solid triangles repre-

sent the experimental scaling function from [10]. The result of this

work: calculations by using n(k) from [26] (solid line). The long-

dashed line is the result from [27]. The short-dashed line is result

in the Hartree-Fock method (taken from [7])

using the nucleon momentum distributions from the phenomenological cor-
relation model accounted for short-range and tensor correlations [15]. In
this case n, (k) is identified with the third terms in the right-hand side of

eqgs.(10), (11) and (12) in [15]for the *He, '°0 and *°Ca nuclei, correspon-
dingly, while n ‘r(k) is identified with the sum of all other terms in the right-

hand side of the same equations.

In the case of *He and '2C the scaling functions calculated in [7 ] and
(10] using many-body correlated wave functions from [27) are given in
Figs.5 and 6, respectively. The predictions of the Hartree-Fock method (ta-
ken from [7]) are shown in Fig.6 for the case of the 12¢ nucleus.

It can be seen from Fig.§ that the scaling function F(y) for *He calcu-
lated within the JCM is in good agreement with the experimental data and
with the results from [10]. The same is true for F(y) calculated using the PM

from [15]for y = — 350 MeV/c. The JCM result for F(y) in 12¢ is similar to
that from the correlation method from [7,10,27 ] for |yl < 300 MeV/c. The
values of F(y) at | yl > 300 MeV/c are much larger than those obtained in the
Hartree-Fock method. This is due to the nucleon correlation effects in the
momentum distribution calculated in the Jastrow method. We note the diffe-
rence between the results for F(y) at 1yl > 300 MeV/c obtained in the JCM
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and in the PM in the cases of %0 and 0ca. we emphasize the necessity of
obtaining experimental data for F(y) in these nuclei as a test of the various

correlation methods.

Table. Mean Kinetic ((T)) and mean removal ((E)) energies,

occupation probabilities Sgr and Sex calculated within the Hartee-Fock (HF)

approximation and in many-body correlation methods [11,12,13,15,28,29,30]
and the binding energy per nucleon (E4/A)

(T (E) E/A (E A/A)exp
Nuclei MeV MeV Sgr S,y [eq.(10)] [32]
MeV MeV
‘He Shell model [28] 17.1 19.8 1.0 0.0 4.20 7.07
Ref.[28] 21.1 28.2 7.07
Ref.[30] 28.7
calculated in this
work using
Ref.[11) 2596 | 31.45 | 0.93 0.07 7.07
Ref.[15] 20.35 | 27.71 0.93 0.07 7.07
Ref.[12,13] 25.79 | 31.34 | 0.905| 0.095 7.07
2c | HF [29] 170 {230 | 1.0 0.0 3.77 7.68
Ref.[29] 37.0 49.0 0.8 0.2 7.68
calculated in this
work using
Ref.[26] 20.97 | 34.42 | 0.98 0.02 7.68
189 HF [29] 15.0 24.0 1.0 0.0 5.00 7.97
Ref.[29] 27.0 41.0 7.90
Ref.[30] 344"
calculated in this
work using
Ref.[15] 19.73 | 34.37 | 0.94 0.06 7.98
Ref.[12,13] 21.28 | 35.81 | 095 0.05 7.97
“ca | HF [29) 165 | 266 | 1.0 0.0 5.26 8.55
Ref.[29] 36.0 521 0.8 0.2 8.51
calculated in this
work using
Ref.[15} 18.71 | 3533 | 091 0.09 8.55
Ref.[12,13) 23.29 | 39.80 | 0.91 0.09 8.55
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3.2. Mean Kinetic and Mean Removal Energy

The study of the nucleon correlation effects using realistic nucleon-nuc-
leon interactions shows [28—30 ] a substantial increase of the values of the
mean kinetic (T) and mean removal (E) energy with respect to their Hartree-
Fock values, as well as a strong relation between the high-momentum com-
ponents in the momentum distribution. This link is quantitatively explained
within the two-nucleon correlation model {31] in which the high-momen-
tum components of a nucleon are generated by its hard interaction with a
single nucleon, whereas the remaining (A — 2) nucleons (the soft nucleons)
move in the mean field with c.m. momentum &, _, = 0. Egs. (11—13) allow

us to calculate (T) and (E) using the momentum distributions from [11—
15). We note that le |, (T) and (E) have to satisfy the Koltun’s sum rule

(€q.10)) [16 1. The values of the mean kinetic and removal energy, as well as
the binding energy per nucleon evaluated by using of eq.(10), which are cal-
culated within the shell model, in the Hartree-Fock method and in various

correlation methods for the 4He, 12C, 160 and *°Ca nuclei are given in the
Table. It can be seen that the increase of the values of (T) and (E) due to the
correlation effects is quite a general feature of the many-body calculations.
The values of (T) and (E) obtained in our correlation approaches give a cor-
rect value for the binding energy per nucleon, which is not the case in the
shell model and in the Hartree-Fock method. The values of the occupation
probabilities Sgr and S_ _are listed also in the Table. They are obtained

using egs.(14) and (15) in calculations for “He, 12C, 160 and 4°Ca nuclei.
Due to the ground state correlations the values of Sgr are less than unity

(while SZ_F = 1) and the values of S, are larger than zero (while Sg(F =0).

4. Conclusions

It is shown in the y-scaling method that if only nucleonic degrees of free-
dom are considered within the framework of the PWIA, then at sufficiently
high values of q the structure function F(g, y) becomes a function only of y.
The analysis of the y-scaling in the region where it is observed (y < 0) allows
one to obtain information on the important characteristics of the nucleon
dynamics (e.g., on the nucleon momentum distribution) in nuclei. The ana-
lysis in the region where the scaling is not observed (y > 0) yields informa-
tion on the effects which break down the impulse approximation and shows
the limits of the independent-particle description of the nuclear systems.
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The main conclusion of the y-scaling analysis is that the experimentally
obtained asymptotic scaling function, as well as the scaling function calcu-
lated in various correlation methods differ largely from the scaling function
obtained in the MFA. The binding correction to the scaling function can be
explicitly evaluated using the nuclear spectral function. These conclusions
are confirmed in the present work by the calculations of the scaling functions
F(y) and the binding correction B(y) by using realistic momentum distribu-
tions obtained within the correlation approaches, such as the Jastrow
method [12,13 ] and the phenomenological correlation model [14,15])in the

case of the 4He, IZC, 180 and *°Ca nuclei. The increased calculated values
of the mean kinetic (T) and mean removal (E) energy in comparison with the
shell-model and the Hartree-Fock calculations lead to correct results for the
binding energy per nucleon in the nuclei considered. The values of (T) and
(E) obtained in this work can be related to the presence of high-momentum
and removal energy components in the many-body spectral function. These
values reflect the extent to which the short-range nucleon-nucleon correla-
tions are accounted for in the methods considered in this work.
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